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Abstract 

This paper aims at the development of an approach integrating the fuzzy logic 
strategy for an HIV therapeutic dynamical optimal control problem. To test the 
efficiency of this strategy, the authors propose a numerical comparison with the 
indirect method. The results are in good agreement with experimental data. 
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1. Introduction 

AIDS - Acquired Immunity Defficiency Syndrome is the disease that 
has affected the whole world in the 25 years since it was first detected. It 
is caused by Human Immunodefficiency Virus (HIV). Of great concern 
today is the treatment of patients infected with HIV. It currently 
mobilizes many researchers, who do not spare any effort for all that can 
contribute to the improvement of the health for the people living with the 
disease. One of the possible way is to use the multidrug therapies. In this 
case, several drugs can be considered. They are identical or different 
classes (RTIs, PI, AZT, DDI, DDC, and D4T). The availability of the 
strongly active antiretroviral multidrug therapies (HAART: Highly Active 
Antiretroviral Therapy) in the countries with high incomes allowed 
remarkable falls of the deaths related to the AIDS. But the multidrug 
therapies presents certain disadvantages, in particular: 

● Anti-HIV treatment does not cure an infection. 

● The HIV can gradually acquire resistance to the drugs. 

Several authors were interested in mathematical modelling of 
therapeutic control of the HIV [2]. These controls consist of strategies 
defined by the experts [1]. These strategies are more or less acceptable, 
but they present unverifiable side effects. The objective of this paper is to 
find adapted therapeutic controls, which minimize an objective function 
to stabilize the parameters. We consider the described mathematical 
model in [1], where a dynamic mathematical model justifies the 
interaction of the immune system with HIV and permits drug “cocktail” 
therapies. Here, an optimal control problem permits to derive optimal 
structured treatment interruption (STI) to control HIV and limit drug 
exposure. Taking into account nonlinearity of the differential equations, 
which model the dynamics of the infection in the human organism, the 
determination of solution is a problem, which can appear to be difficult. 
In this work, we propose a strategy of calculation based on fuzzy logic to 
determine a protocol of optimal treatment. 
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This paper is organized as follows. Section 2 is interested in methods. 
Thus, it presents the optimal control problem. Moreover, a short 
description of strategy approach of fuzzy logic for solving optimal control 
problems is discussed in this section. The Section 3 describes resolution 
approches to solve a problem of optimal control for HIV dynamical 
infection. We present the indirect approach and the approach integrating 
the fuzzy logic. The numerical simulation is presented in Section 4. 
Finally, we give concluding remarks in Section 5. 

2. Methods 

2.1. Model description 

There are many mathematical models for dynamical infection of HIV 
in human organism [6], [7], [10], and [11]. Simple models describe the 
interaction between the immune system and the HIV [10], [11]. In this 
paper, we consider a mathematical model, which describes the interaction 

between the +4CD  cells, the HIV, and the immune system. Such model 
has been elaborated by Perelson and Callaway [4] that considered six 
compartments. To complete this model, Bonhoeffer added the 
compartment permitting to describe the dynamics of the immune 
response [3]. In presence of a treatment, the model of dynamical infection 
is based on the compartmental diagram presented in the Figure 1. 

 

Figure 1. Compartmental diagram describing the dynamics of HIV 
infection in vivo. 
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If we note ( ) ( )tut 11 =  and ( ) ( ),22 tut =  the model proposed consists 
of the following differential equations [2]: 
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The state variables are: 1T  (type 1 target cells, e.g., +4CD T-cells), 2T  

(type 2 target cells, e.g., macrophages), IV  (infectious free virus), NIV  

(non-infectious free virus), and E (cytotoxic T-lymphocytes). A superscript 

asterisk ( )∗  denotes infected cells. 

The natural infection rate ( )2,1=iki  may differ between two 

populations, which could account for suspected differences in activation 
rates between lymphocytes and macrophages. The treatment factor ( ),1 tu  

described further below, represents a reverse transcriptase inhibitor  
(RTI) that blocks new infections, and is potentially more effective in 

population ( )∗11,1 TT  than in population ( ),,2 22
∗TT  where the efficacy 

is 1fu  with [ ].1,0∈f  The uninfected populations target cells 1T  and 2T  

may have different source rates iλ  and natural death rates ( ).2,1=idi  

Free virus is produced by types of infected cells. We assume that   
they produce the virus at the same rate. In this model, virus may leave 
the IV  compartment due to natural death at rate c or via infecting a 

target cell (at rate iiTk ) ( ).2,1=i  The action of a protease inhibitor (PI), 
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which causes infected cells to produce non-infectious virus NIV  is 
modelled by .2u  Therefore, 21, uu  are the controls and represent RTI 
and PI “efficacies”, respectively. Tracking non-infectious virus is 
important because the clinically-measured viral load data for patients 
includes total free virus (sum of infectious IV  and non-infectious NIV ). 
The immune effectors E (cytotoxic T-lymphocytes) are produced in 
response to the presence of infected cells and existing immune effectors. 
The cytotoxic T-lymphocytes remove infected cells from the system in the 

equations for dt
dT ∗

1  and dt
dT ∗

2  at rates 1m  and ,2m  respectively. TN  

designates the productivity rate of virus by the infected +4CD  cells and 

infected macrophages cells. +4CD T-cells and the macrophages cells have 
a finite life-span and die at a rate of δ  per cell. 1ρ  (respectively, 2ρ ) 
characterizes the capacity of antiretroviral that prevents the 

multiplication of the infected +4CD  cells (respectively, infected 
macrophages cells). Eλ  is the rate of natural production for the cells that 
play a crucial role in immune system. Eb  designates the production rate 
of cells, which compose the immune system. Ed  represents the 
elimination rate of cells, which constitute the immune response, Eδ  is 
the natural death rate of the cells. bK  (respectively, dK ) represents the 
saturation constant for the immunized birth (respectively, death). 

2.2. Setting of problem 

Let us consider 
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and 

( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( )) ,,,,,,,,,,,,,,, 7654321
TXtFXtFXtFXtFXtFXtFXtFXtF =  

(3) 

the state system can be written as the following compact form: 

( ) ( )( )
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


=

µ=
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0XX
ttXFdt
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 (4) 

To determine the equilibrium state, we consider the state vector 

( ) ,,,,,,, 2121
T

NII EVVTTTTX ∗∗=  

the initial state vector 

( ) ,,,,,,, 00,0,0,20,10,20,10
T

NII EVVTTTTX ∗∗=  

the desired equilibrium state vector 

( ) ,,,,,,, ,
2

,
121

Tee
NI

e
I

eeeee EVVTTTTX ∗∗=  

and the control vector ( ) ., 21
Tuu=µ  Moreover, we suppose the case, 

where the patient does not take any treatment. Then, it follows that 

( ) [ ].,0,0 maxTtt ∈∀=µ  

The equilibrium states are determined, if we take ( ) ,00; =eXF  and we 

consider that every fixed e
IV  corresponds to one and only one equilibrium 

state. Therefore, the equilibrium state is given by the following 
parameters 
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.0=e
NIV  (8) 

The numerical value is determined by using the symbolic calculation. 
The implementation in MATLAB permits to obtain the results given in 
the Table 1. 

Table 1. The equilibrium points of the system (1), if ( )01 tu  and ( )02 tu  
are zero 

Equilibrium parameter First equilibrium point  
( )1EQ  

Second equilibrium point 
( )2EQ  

( )lcells1 µeT  1096 814.6232 

( )lcells2 µeT  4.5678 0.1238 

( )lcells,
1 µ∗eT  0 1.4799 

( )lcells,
2 µ∗eT  0 0.5213 

( )mlcopiese
IV  0 1463.7949 

( )mlcopiese
NIV  0 0 

( )lcells µeE  0.1409 0.1487 

 non infection already tainted 
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The main idea of the problem is to permit the system to reach a 
equilibrium state from its initial state. In this case, the control parameter 
must stabilize the system to equilibrium point. For a patient who takes 

the treatment, the controls 1u  and 2u  influence the +4CD T-cells, 
macrophages and the immune response. The result of this influence is 

that the +4CD T-cells, the infected +4CD T-cells, the macrophages, the 
infected macrophages, the infectious free virus, the non-infectious free 
virus, and the cytotoxic T-lymphocytes stabilize around their respective 

equilibrium values ,,,,,, 2211
e
NI

e
I VVTTTT ∗∗  and .eE  We adopt a 

theoretical control approach, that is, we want to find a suboptimal 
treatment strategy that can lead to high immune response and 
subsequent control of viral load without the need for further drug 
therapy. 

We formulate the problem of effective multidrug therapies as a 
tracking problem. Therefore, the optimal control problem can be 
formulated as follows. 

Find ( )∗∗
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subject the system (1). The parameters ,,,,,,,, 17654321 ηβββββββ  and 

2η  are the weight positive real constants. 

2.3. Description of fuzzy logic strategy approach 

Let us consider the following problem. 

Find 1,,0, −=∈ NkU N
k …R  that minimizes 
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where R and Q are positive defined matrices. 

The problems (10)-(11) can be solved by the dynamic programming 
method. This method has a fast convergence, its convergence rate is 
quadratic and the optimal solution is often represented as a state of 
control feedback [?]. However, the solution is determined by this method 
depends on the choice of the initial trajectory and in some cases, this 
solution is not optimal. It is for this reason that, the integration of the 
fuzzy logic [8] can permit to determine quickly the optimal solution. We 
develop a linearization strategy of the subject system by an approach 
based on the fuzzy logic. This approach had been developed by Takagi-
Sugeno [13], [14]. The model that has been introduced in 1985 by Takagi-
Sugeno permits to get some fuzzy linearization regions in the state space 
[9]. While taking these fuzzy regions as basis, non linear system is 
decomposed in a structure multi models, which is composed of several 
independent linear models [5]. The linearization is made around an 
operating point contained in these regions. 

Let’s consider the set of operating point .,,1, SiXi …=  Different 

fuzzy approximations of the nonlinear term ( )xNL  can be considered. 

1. The approximation of order zero gives: 

( ) ( ) ( ).0 ixNLxNLxNL =≈   (12) 

2. Using the first order of Taylor expansion series, we obtain: 

( ) ( ) ( ) ( ) ( ).1 i
T

x
i xxdx

xdNLxNLxNLxNL
i

−





+=≈   (13) 

To ameliorate this approximation, we introduce the factor of the 
consequence for fuzzy Takagi-Sugeno system. This factor permits to 
minimize the error between the non linear function and the fuzzy 
approximation. If   designates this factor, the approximation (13) can be 
formulated as the following for me: 
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( ) ( ) ( ) ( )xNLxNLxNL 101 +β−≈  
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If one replaces the term NL by its value approached in (11), the 
linearization around ix  leads to 

,1,,0;,,1,,,,1 −==++=+ NkSiCUBxAx kikkikkik ……   (15) 

where kiA ,  and kiB ,  are square matrix, which has NN ×  order and 

kiC ,  matrix with 1×N  order. 

Therefore, the optimal control problems (10)-(11) becomes a linear 
quadratic problem, which the feedback control is given by the following 
expression [?], [15]: 

,1,,0;,,1,, −==−= NkSixKU kiki ……   (16) 

where 

( ) ,1
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T
iii

T
ii AEBBEBQK −+=  (17) 

is the feedback gain matrix, and iE  discrete Riccati equation solution of 

the following form: 
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T
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T
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T
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It is obvious that, the linearization around every operating point gives the 
system for which the equations have the form (15). Because, there are S 
operating points, we have S systems which have this form. Therefore, 
according to the relation (16), S controls are determined. The 
defuzzyfication method [14] permits to determine only one system and 
only one control .kU  

Then, this transformation gives the following equation: 

,1,,0,1 −=++=+ NkCBUAxx kkk …   (19) 
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and where ( )ii xω  designates membership degree partner to the 

operating point .ix  

3. Resolution Approaches 

In this part, we are interested in the application of fuzzy logic 
strategy and indirect approach to solve the problems (1)-(9). 

3.1. Fuzzy logic strategy 

Let us consider the uniform grid 
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

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
 ===Ω NjN

jTt jN …   (22) 

If we set 

,eXXY −=   (23) 

and ,max
N

Th =  the first order explicit Euler’s scheme on NΩ  permits to 

approach the system (4) as following 
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 where j
iY  denotes ( ) .7,,1, …=itY ji  

Let us consider 

,1,,0,1 −=−=∆ + Nkttt kk …  and ( ) .,,,,,, 7654321
Tjjjjjjjj YYYYYYYY =   

Using the method of the rectangles, we can approach the objective 
function (9) by the following form: 
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where ( ) Rtjj ,µ=µ  denotes a matrix, whose elements are defined by 
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if,

, …=


 =β

= li
li

R i
li  
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.
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0
2

1 







η

η
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Fuzzy logic strategy idea is based on the linearization of every nonlinear 
term for the system (1). This strategy permits to obtain the Takagi- 
Sugeno’s fuzzy system. 

Let Y be a universe of discourse, whose linguistic variables are: 

1. The +4CD T-cells (CD4NI); 

2. The macrophages (CMNI); 

3. The infected +4CD T-cells (CD4I); 

4. The infected macrophages (CMI); 

5. The infectious virus (VRI); 

6. The non-infectious virus (VRNI); 

7. The immune response (CSIM). 
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If we consider the study made on a certain number of patient in 
Massachussets General Hospital [2], each parameter admits the limits. 
Then, the variation intervals of the parameters are given in Table 2. 

Applying the change of variable that is using the formula (23) and 
considering the equilibrium values ( )2EQ  according to the Table 1, it is 

easy to determine the components of the variable Y and their variation 
intervals. According to the theory of fuzzy logic, we can then consider that 

the linguistic variables of the universe of discourse admit the labels 
centered in values of operating points given in Table 3. 

Considering operating points values, the Figures 2, 3, 4, and 5 
illustrate the triangular membership functions associated to the 
considered labelling. These figures also show the linguistic terms for 
linguistic variables. 

Table 2. Parameter and variation interval for a patient in 
“Massachussets General Hospital” 

Parameter Interval 

( )lcells1 µT  [200, 1000] 

( )lcells2 µT  [3, 18] 

( )lcells1 µ∗T  [0, 2400] 

( )lcells2 µ∗T  [0, 3] 

( )mlcopiesIV  [0, 122000] 

( )mlcopiesNIV  [0, 8000] 

( )lcells µE  [0, 1] 
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Table 3. Operating point values for the linguistic variables of universe of 
discourse 

Linguistic variable Operating point values 

       CD4NI −614.6232, −214.6226, and 185.3780 

       CMNI 2.8762, 10.3762, and 17.8762 

       CD4I −1.4799, 1198.5201, and 2398.5201 

       CMI −0.5213, 0.9787, and 2.4787 

       VRI −1463.7949, 59536.2056, and 120536.2060 

       VRNI 0, 4000 et 8000 

       CSIM −0.1487, 0.3513, and 0.8513 

 

 

Figure 2. The triangular membership functions for the linguistic 

variables “ +4CD T-cells” (a), and “macrophages” (b). 
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Figure 3. The triangular membership functions for the linguistic 

variables “infected +4CD T-cells” (a), and “infected macrophages” (b). 

 

 

Figure 4. The triangular membership functions for the linguistic 
variables “infected virus” (a), and “non infections virus” (b). 
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Figure 5. The triangular membership functions for linguistic variable 
“immune response”. 

In the Figure 2, 106.8780 and − 514.6220 (resp., 17.4212 and 7.8762) 

designate the entry values of linguistic variables “ +4CD T-cells” (resp., 
“macrophages”) in the case of the first and advanced phase of a patient 
having the HIV infection. PCD4NI, NCD4NI, and GCD4NI (resp., 

PCMNI, NCMNI, and GCMNI) represent the linguistic terms of “ +4CD T-
cells” (resp., “macrophages”). The below index p and a represent, 
respectively, the first phase and advanced phase. In the Figure 3, 
1267.5201 and 1998.520 (resp., 0.0883 and 1.4787) designate the entry 

values of linguistic variables “infected +4CD T-cells” (resp., “infected 
macrophages”M) in the case of the first and advanced phase of a patient 
having the HIV infection. PCD4I, NCD4I, and GCD4I (resp., PCMI, 

NCMI, and GCMI) represent the linguistic terms of “infected +4CD T-
cells” (resp., “infected macrophages”). The below index p and a represent, 
respectively, the first phase and advanced phase. In the Figure 4, 
70386.20600 and 118536.2060 (resp., 4990.9 and 7500) designate the 
entry values of linguistic variables “infected virus” (resp., “non infections 
virus” ) in the case of the first and advanced phase of a patient having the 
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HIV infection. PVRI, NVRI, and GVRI (resp., PVRNI, NVRNI, and 
GVRNI) represent the linguistic terms of “infected virus” (resp., “non 
infections virus”). The below index p and a represent, respectively, the 
first phase and advanced phase. In the Figure 5, 0.0396 and −0.0687 
designates, respectively, entry value of linguistic variable “the immune 
response” in the case of the first and advanced phase of a patient having 
the HIV infection. PCSIM, NCSIM, and GCSIM represent the linguistic 
terms of “the immune response”. The below index p and a represent, 
respectively, the first phase and advanced phase. 

Let us set 3,2,1=k  operating point number and ( ,,, jjjj KGDV =  

) ,,,, T
jjjj ZSNM  where ,,,,,, jjjjjj SNMKGD  and jZ  designate, 

respectively, the operating point for linguistic variables CD4NI, CMNI, 
CD4I, CMI, VRI, VRNI, and CSIM. Taylor approximation of order zero 
for the first equation of system (24) gives: 

[ ( ( )) ( ( ))] ,7,,1,;;1 …=µ+µ+=+ itVFtYFhYY jNL
j

L
jj  

where LF  is linear term of F and ,NLF  its nonlinear term in the system 

(24). 

Therefore, optimal control problem (9) with subject the system (1) can 

be formulated as follows. Find ( )∗
−

∗∗ µµ=µ 10 ,, N…  solution of 

( ) ( ) ( ) ,min
1

0
hPYRYuJ j

T
j

jTj
N

j






 µµ+≈ ∑

−

=
µ

 (26) 

subject to 

,3,2,1,1 =+µ+=+ kCBYAY kjk
j

k
j  (27) 

where kA  is a 7 × 7 matrix, whose non zero elements are 
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Ik −−=  ( ) ;11
5,1 e

k ThkA −=  

 ( ) ;1 22
2,2 khVhdA e

Ik −−=  ( ) ;22
5,2 e

k ThkA −=  

 ( ) ;1
1,3 khVA e

Ik =  ( ) ;1 1
3,3 e

k hEmhA −δ−=  

 ( ) ;11
5,3 e

k ThkA =  ( ) ;,
11

7,3 e
k ThmA ∗−=  

 ( ) ;2
2,4 khVA e

Ik =  ( ) ;1 2
4,4 e

k hEmhA −δ−=  

 ( ) ;22
5,4 e

k ThkA =  ( ) ;,
22

7,4 e
k ThmA ∗−=  

 ( ) ;10 11
31,5 e

Ik VkhA ρ−=  ( ) ;10 22
32,5 e

Ik VkhA ρ−=  

 ( ) ;1033,5 δ= Tk NhA  ( ) ;1034,5 δ= Tk NhA  

 ( ) ( );101 222111
35,5 ee

k TkTkhchA ρ+ρ−−=  ( ) ;16,6 chAk −=  

 ( ) .17,7
Ek hA δ−=   

jB  is a 7 × 2 matrix, which non zero elements are: 

( ) ( );111
1,1 ee

Is
ee

Isssk TVNTVDNDhkB +++=  

( ) ( );222
1,2 ee

Is
ee

Isssk TVNTVGNGfhkB +++=  

( ) ( );111
1,3 ee

Is
e

s
e
Issk TVNTDVNDhkB +++−=  

( ) ( );222
1,4 ee

Is
e

s
e
Issk TVNTGVNGfhkB +++−=  

( ) [ ( )ee
Is

e
s

e
Issk TVNTDVNDkhB 1111

31,5 10 +++ρ=  

( )];2222
ee

Is
e

s
e
Iss TVNTGVNGkf +++ρ+  

( ) ( );10 ,
2

,
1

32,5 ee
ssTk TTMKNhB ∗∗ +++δ−=  
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( ) ( ),10 ,
2

,
1

32,6 ee
ssTk TTMKNhB ∗∗ +++δ=  

and 

( )
( )

( )
( )

( ) ( )

( )
( )

( ) ( )

( )
( )

( )
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
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=

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

e
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d
ee
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ee
ssE

e
EE

e
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b
ee
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ee
ssE

e
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eee
I

ee
T

e
Issss

eeeee
Issss

eeeee
Issss

ee
I

e
ss

ee
I

e
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k

EZ
KTTMK

TTMKhd

EhEZ
KTTMK

TTMKhb
hcV

TkTkVhTTNh
hcVNDkhNDkh

TEmTTVkhZMhmNGhk
TEmTTVkhZKhmNDhk

TVkTdhNGhk
TVkTdhNDhk

C  

For application, let us consider the parameters given in Table 4 [2]. 

Let us take 100=N  and ,10max =T  after calculation, we obtain the 
following results: 
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Table 4. The values of the parameters in the HIV model 

Parameter Value Unit Parameter Value Unit 

1λ  096.1  
.daymm

cells
3  2λ  10099.0  

.daymm
cells

3  

1d  310−  day
1  2d  022109.0  day

1  

1k  710407.2 −×  yvirions.da
mm3

 2k  
4105290.5 −×

 yvirions.da
mm3

 

1m  024385.0  
cells.day

mm3
 2m  013099.0  

cells.day
mm3

 

1ρ  1  cells
virions  2ρ  1  cells

virions  

δ  18651.0  day
1  c  784.4  day

1  

f  53915.0  − TN  41.19  cells
virions  

Eλ  
3109085.9 −×

 .daymm
cells

3  Eδ  070299.0  day
1  

Eb  210299.1 −×  day
1  Ed  010213.0  day

1  

bK  39087.0  3mm
cells  dK  83790.0  3mm

cells  

 

.

9930.0000000
05216.000000
004951.00159.3620159.3629332.800352.0
0010685.09812.000809.00
0010196.009810.0010352.0
0010685.0009169.00
0010196.00009599.0

7
66
7
6





























−−
×
××
×−
×−

= −

−−

−

−

kA  
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,

00
1159.4349620
1159.4349620141.19974

00931.19
08810.0
04132.35
08810.0

,

00
101918.400
101918.400

00
00
00
00

2

11

11
1





























−
−
−

=





























×
×−

=

−

−
BB

 

,

00
2317.8699240
2317.8699244333.68398

04619.65
09365.2
04168.121
09365.2

3





























−
−
−

=B  

 

.

0002.0
0
1301.1237443
0493.0
4407.4
1348.119
5373.0

and,

0001.0
0

4993.705329
0146.0
3337.1
1557.34
3081.0

,

0001.0
0

5573.51228
0001.0
0217.0
2330.0
0211.0

321





























−

−
−

−

=





























−
−

=





























−

−

−

= CCC  

It is obvious that the three state systems (27) permit to obtain three 
feedback controls, which have the following form: 

,1,,1;3,2,1, −==−=µ NjkYL jkj …   (28) 

where kL  is a gain feedback matrix. kL  must be determined according to 
the relation (17). We suppose that R and P are, respectively, 7 × 7 and     
2 × 2 identity matrices. After calculations, we obtain the following 
matrices: 

,
0012.000001.00021.00020.00019.00007.0
0000000

1 







−−−−
=L  
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,
0001.00001.00001.00015.00019.00007.00467.0
0015.00001.00001.00001.00109.00002.01142.1

2 







−−−−
−−−

=L  

.
0001.00001.00001.00007.00010.00003.00242.0
0005.00001.00001.00001.00033.00001.03341.0

3 







−−−−
−−−

=L  

To transform three systems (27) in only one system, it is necessary to 
apply defuzzyfication technique [13] on matrices ,,,,, 21321 CCBBB  and 

.3C  This transformation depends on the degrees of membership given in 
Table 5. 

Hence, the technique of defuzzyfication gives the following results: 

First infection phase 

.

0001.0
0

1208.218539
0172.0
4161.5
5161.97
0939.0

,

00
4376.4599720
2941.7947683078.60031

06656.53
08585.1
05374.99
08585.1





























−

−
−
−

=





























−
−
−

= CB  

Table 5. Values of the membership degrees of linguistic variables CD4NI, 
CMNI, CD4I, CMI, VRI, VRNI, and CSIM according to data of the study 
made in “Massachussets General Hospital” on the alive patients with HIV 

 p1ω  p2ω  p3ω  a1ω  a2ω  a3ω  

NICD4µ  0 0.1962 0.8038 0.75 0.25 0 

CMNIµ  0 0.0607 0.9393 0.6667 0.3333 0 

ICD4µ  0 0.9425 0.0575 0 0.3333 0.6667 

CMIµ  0.5936 0.4064 0 0 0.6611 0.3389 

VRIµ  0 0.8221 0.1779 0 0.0328 0.9672 

VRNIµ  0 0.7523 0.2477 0 0.1250 0.8750 

CSIMµ  0.6234 0.3766 0 0.84 0.16 0 
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.
0005.00001.00001.00009.00015.00004.00360.0
0001.00001.00001.00001.00073.00001.07432.0









−−−−
−−−

=L  

Advanced stage of infection 

,

0001.0
0

4993.705329
0146.0
3337.1
1557.34
3081.0

,

00
4007.6533600
1159.4349620141.19974

00931.19
08810.0
04132.35
08810.0





























−
−

=





























−
−
−

= CB  

.
0005.00001.00001.00015.00019.00007.00467.0
0001.00001.00001.00001.00109.00002.01142.1









−−−−
−−−

=L  

3.2. Indirect approach 

In this part, the objective is to solve the optimal control problem (9) 
subject to the constraints (1) by an indirect approach. Let us note that 
this approach requires the necessary optimality conditions. We use the 
Pontryagin maximum principle [12], which relates the optimality of the 
control to minimize or maximize the Hamiltonian function. 

Let us take ( ) ,,,,,,, 7654321
TFFFFFFFF =  the vector whose 

components are given by (2). The Hamiltonian function associated with 
the objective function for the optimal control problem (9), and to the state 
system (1) can be written as follows 

( ) ( ( ) ) ,,,, 2
2

1

2
7

1
jj

j
ii

e
iii

i
FpXXpXtH µη++−β=µ ∑∑

==

 (29) 

where ip  is the component of adjoint vector. 

Let us consider 

( ) ( ( ) )511111111 12 XkudpXXG e −++−β−=  

( ) ( ) ,1011 51
3

1155113 XkupXkup ρ−+−−  (30) 
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( ) ( ( ) )521222222 12 XkfudpXXG e −++−β−=  

( ) ( ) ,1011 52
3

2155214 XkfupXkfup ρ−+−−  (31) 

( ) ( ) ( ) δ−−+δ+−β−= T
e NupXmpXXG 3

257133333 1012  

(
( ) ( )

),10 2
43

2
43

77
3

26
b

bE

d

dE
T

KXX
Kb

KXX
KdXpNup

++
−

++
+δ−   

(32) 

( ) ( ) ( ) δ−−+δ+−β−= T
e NupXmpXXG 3

257244444 1012  

(
( ) ( )

),10 2
43

2
43

77
3

26
b

bE

d

dE
T

KXX
Kb

KXX
KdXpNup

++
−

++
+δ−   

(33) 

( ) ( ) ( ) ( ) 1113221211115555 1112 XkupXkfupXkupXXG e −−−+−+−β−=  

( ) ( ( ) ( ) ),1011011 22
3

2111
3

1152214 XkfuXkucpXkfup ρ−+ρ−++−−  

(34) 

( ) ,2 66666 cpXXG e +−β−=  (35) 

( ) 4243133377 2 XmpXmpXXG e ++−β−=  

( ) ( ).
4343

437 E
d

E
b

E
KXX

d
KXX

bXXp δ−
++

−
++

+−  (36) 

Therefore, the system of adjoint state is 

.7,,1, …== iGdt
dp

i
i  (37) 

Finally, the optimal control is determined thanks to the resolution of the 
optimization problem, which we can formulate as follows. 

Find ∗µ  solution of 

( ).,,,min µ
µ

pXtH  (38) 
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The determination of the solution for such problem can be made in 
several computer platforms. We consider the implementation by using 
MATLAB thanks to the function f solve. 

4. Numerical Simulation 

4.1. Results 

Our objective is to stabilize the +4CD T-cells, macrophage cells, the 

infected +4CD T-cells, the infected macrophages, the infectious virus, the 
non-infectious virus, and immune system cells around their equilibrium 
values. This mechanism is possible thanks to the controls therapeutic 1u  

and ,2u  which can take the values at every moment in the interval [0, 1] 

[6], [10]. We consider that the patient takes antiretroviral drugs during 
six months ( ).days180max =T  The solutions of the optimal control 

problem (9) subject to the system (1), (26)-(27), and (38) can be 
determined in several computer platforms. The implementation of these 
solutions is made in MATLAB. If we consider that AHLF and AINDIR, 
which refer to the approach integrates the fuzzy logic strategy and the 
indirect approach, we obtain the Table 6. 

Table 6. The minimal values of the objective function ( )optJ  and the 

time of execution (T) of the main program (subroutine of MATLAB) for 
the resolution of the optimal control problem (9) subject to the system (1) 
by AHLF and AINDIR 

  First phase Advanced phase 

optJ  124.5457 281.2508 
AHLF 

T (second) 11.5218 12.5341 

optJ  0.3590 1.9600 
AINDIR 

T (second) 226.7570 221.4290 
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The Table 6 shows that, for two infection phases, the execution time 
of the program, which solve the problem of optimal control by AHLF is 
less than the one of main program providing a solution to the problem by 
AINDIR. This table also shows that, the value of the objective function 
obtained using AINDIR is less than the one given by the use of AHLF. 
This result is due to the fact that, the indirect approach is accurate 
compared to the approach integrating fuzzy logic that needs a method of 
discretization (finite difference explicit Euler first order). For the 
variation of the parameters, we are interested in the simulation results of 
the advanced phase. The numerical simulation of therapeutic control 
problem for a patient of HIV infection in the advanced phase gives the 
appearance of curves represented in the Figures 6, 7, and 8. 

 

Figure 6. The optimal therapeutic control variation in the advanced 
phase case. The dashed line (respectively, the dashed-dot line) designates 
the optimal curve for the hybrid approach integrating the fuzzy logic 
strategy (respectively, the indirect approach). 
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Figure 7. Variation of the +4CD  cells non tainted (a), of the infected 
+4CD  cells (b), of the macrophages cells (c), and of the infected 

macrophages cells (d) in relation to their equilibrium values of balance 
(solid line) in the advanced phase case. The dashed line (respectively, the 
dashed-dot line) designates the optimal curve for the hybrid approach 
integrating the fuzzy logic strategy (respectively, the indirect approach). 

 

Figure 8. Variation of infectious virus (a), of the non infectious viruses 
(b), and of cells constituting the immune system (c) in relation to their 
equilibrium values (solid line) in the advanced phase case. The dashed 
line (respectively, the dashed-dot line) designates the optimal curve for 
the hybrid approach integrating the fuzzy logic strategy (respectively, the 
indirect approach). 
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4.2. Discussion 

Figure 6 shows the comparison of therapeutic optimal control curves 
1u  and 2u  by using fuzzy logic strategy and indirect approach. Using the 

indirect approach to solve the problem of optimal control (9) subject to the 
system (1), we get controls 1u  and ,2u  which decrease gradually from the 
first day of the advanced phase to achieve their minimum value (zero), 
where they are stabilized. The 1u  stabilizes at 70th day of the early phase 
whereas 2u  becomes stable in 65th day. The Figure 7(a) (respectively 
7(c)) shows that by using the approach integrating the fuzzy logic 

strategy approach, the +4CD  cells (respectively, macrophages cells) 
increase (respectively, decrease) to reach their equilibrium values. The 
hybrid approach integrating fuzzy logic permits the stabilization to the 

equilibrium value of +4CD  cells, and macrophages cells at 120th day 
after the onset of the advanced phase. These figures show that using the 

indirect approach, the plateaus of stabilization for the +4CD  cells 
(respectively, macrophages cells) is reached after 20th (respectively, 70th) 
day after the onset of the advanced phase of infection. In the advanced 
phase, the variation of infected macrophages cells obtained by using the 
hybrid approach integrating fuzzy logic is illustrated by Figure 7(d). The 
first day of this phase, they increase to reach their maximal value at 30th 
day. Using the indirect approach, this figure shows that infected 
macrophages cells decrease from the first day of the advanced phase to 
stabilize at 50th day of the beginning of advanced phase. The allure of 
curves for non-infectious viruses represented in the Figure 8(b) show that 
by using two approaches, these viruses decreased at the beginning of the 
advanced phase of infection before to stabilize themselves. With the 
indirect approach, these viruses decreased to the equilibrium value and 
stabilized themselves after 65th day. At the 10th day after the onset of 
advanced phase is the day, when non-infectious virus stabilize to their 
equilibrium value by the strategy integrating fuzzy logic approach. Figure 
8(c) shows that, the use of the indirect approach and the strategy 
integrating fuzzy logic approach to resolve the problem (9) subject to the 
system (1) permits the increase of cells that constitute the immune 
system to stabilize to their desired value. Using the indirect approach, 
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these cells stabilize to their equilibrium value at 50th day of the 
beginning of the advanced phase of infection. The cells that constitute the 
immune system increase to approach their equilibrium value, if we use 
the strategy integrating fuzzy logic approach. 

5. Concluding Remarks 

In this work, we have compared two approaches for solving the 
problem of therapeutic control of HIV infection. The resolution technique 
used provides interesting answers to the question, which consists of 
determinition of the best treatment by the presence of two controls that 
represent antiretroviral drug to the infection. Numerical simulations give 
rise to interesting conclusions. Considering these results, we note that the 
characteristics of hybrid approach integrating the fuzzy logic strategy are 
the benefits on the indirect approach. Therefore, it can be used to solve 
optimal control problems in the areas of relatively high dimension. 
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